Robust Hamiltonicity of Dirac graphs
نویسندگان
چکیده
A graph is Hamiltonian if it contains a cycle which passes through every vertex of the graph exactly once. A classical theorem of Dirac from 1952 asserts that every graph on n vertices with minimum degree at least n/2 is Hamiltonian. We refer to such graphs as Dirac graphs. In this paper we extend Dirac’s theorem in two directions and show that Dirac graphs are robustly Hamiltonian in a very strong sense. First, we consider a random subgraph of a Dirac graph obtained by taking each edge independently with probability p, and prove that there exists a constant C such that if p ≥ C log n/n, then a.a.s. the resulting random subgraph is still Hamiltonian. Second, we prove that if a (1 : b) Maker-Breaker game is played on a Dirac graph, then Maker can construct a Hamiltonian subgraph as long as the bias b is at most cn/ log n for some absolute constant c > 0. Both of these results are tight up to a constant factor, and are proved under one general framework.
منابع مشابه
Robust Hamiltonicity of random directed graphs
In his seminal paper from 1952 Dirac showed that the complete graph on n ≥ 3 vertices remains Hamiltonian even if we allow an adversary to remove bn/2c edges touching each vertex. In 1960 Ghouila-Houri obtained an analogue statement for digraphs by showing that every directed graph on n ≥ 3 vertices with minimum inand out-degree at least n/2 contains a directed Hamilton cycle. Both statements q...
متن کاملOn Eulerianity and Hamiltonicity in Annihilating-ideal Graphs
Let $R$ be a commutative ring with identity, and $ mathrm{A}(R) $ be the set of ideals with non-zero annihilator. The annihilating-ideal graph of $ R $ is defined as the graph $AG(R)$ with the vertex set $ mathrm{A}(R)^{*}=mathrm{A}(R)setminuslbrace 0rbrace $ and two distinct vertices $ I $ and $ J $ are adjacent if and only if $ IJ=0 $. In this paper, conditions under which $AG(R)$ is either E...
متن کاملHamiltonicity is Hard in Thin or Polygonal Grid Graphs, but Easy in Thin Polygonal Grid Graphs
In 2007, Arkin et al. [3] initiated a systematic study of the complexity of the Hamiltonian cycle problem on square, triangular, or hexagonal grid graphs, restricted to polygonal, thin, superthin, degree-bounded, or solid grid graphs. They solved many combinations of these problems, proving them either polynomially solvable or NP-complete, but left three combinations open. In this paper, we pro...
متن کاملA sufficient condition for Hamiltonicity in locally finite graphs
Using topological circles in the Freudenthal compactification of a graph as infinite cycles, we extend to locally finite graphs a result of Oberly and Sumner on the Hamiltonicity of finite graphs. This answers a question of Stein, and gives a sufficient condition for Hamiltonicity in locally finite graphs.
متن کاملSignless Laplacian spectral radius and Hamiltonicity of graphs with large minimum degree
In this paper, we establish a tight sufficient condition for the Hamiltonicity of graphs with large minimum degree in terms of the signless Laplacian spectral radius and characterize all extremal graphs. Moreover, we prove a similar result for balanced bipartite graphs. Additionally, we construct infinitely many graphs to show that results proved in this paper give new strength for one to deter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012